

PAGE 2007 København

Estimation of patient compliance to an oral anticancer chemotherapy from pharmacokinetic samples

Emilie Hénin¹, Véronique Trillet-Lenoir^{1,2}, Olivier Colomban¹, Michel Tod¹, Pascal Girard¹ ¹ EA3738 CTO, Faculté de Médecine Lyon-Sud, Université de Lyon, France

² Service d'Oncologie Médicale, Hospices civils de Lyon, France

Purpose

- More and more oral anticancer chemotherapies ----- new problems in treatment management
- Non-compliance: deviance of the actual way patients take their treatment with the prescription
- Measure methods: pill count, patient interview, electronic monitoring, ... estimation from serum drug

In silico evaluation

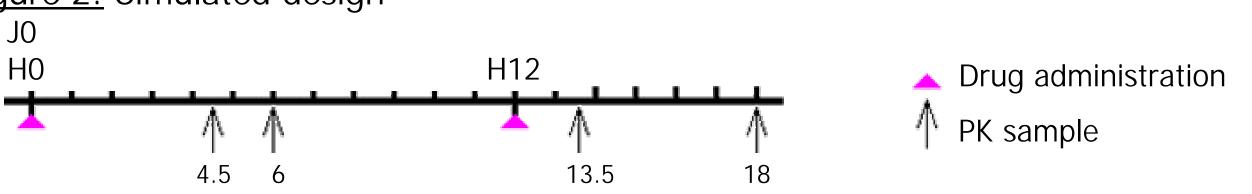
. In silico study based on population PK model of capecitabine and its metabolites⁴

•Concentrations of FBAL $(\alpha$ -fluoro- β -alanine capecitabine metabolite with the longest plasmatic half-life – 3 hours) simulated according to metabolite cascade's model

.FBAL kinetics were correctly modelled by a one compartment model with 1st order absorption and elimination

 $evels^{1,2,3}$

Objectives


Estimate compliance according to a single PK concentration value measured on one dosing interval at steady state and sparse samples taken after first dose

Methods

Assumptions:

- Prescribed doses are taken or not ("all-or-nothing" approach) and dosing times are known exactly
- Only the previous *n* doses can be assessed
- There is no inter-occasion variability
- Individual PK profiles can be derived from POSTHOC parameters estimated using sparse data sampled after first dose.

.1000 PK parameter sets were randomly drown according to their population distribution and FBAL concentrations simulated following the 8 compliance patterns (last 3 doses taken or not) Figure 2: Simulated design

 Individual PK parameters re-estimated on sparse data (4 samples optimally chosen after first 2 doses)

Results:

%0		Predicted pattern							
		1	2	3	4	5	6	7	8
Simulated pattern	1	354	110	97	419	15	4	1	0
	2	371	105	98	412	13	1	0	0
	3	253	90	104	496	39	12	3	3
	4	231	84	90	516	56	11	6	6
	5	1	3	8	18	516	287	162	5
	6	1	0	3	20	506	283	184	3
	7	0	0	0	2	21	32	620	325
	8	0	0	0	2	3	8	172	815

• Last 2 dose adherence well predicted

PK model and individual parameters:

- Estimation of individual parameters from empirical Bayes estimates based on population PK model
- Predicted concentrations according to superposition principle and compliance patterns

Compliance patterns considered:

Compliance = sequence of n							
doses preceding a PK sample							
For example, if $n=3$, there							
exists 8 compliance patterns							

gure 1: Compliance patterns									
	do	se ta	iken	Odose not taken					
	D_3	D_2	D_1		D ₋₃	D <u>-</u> 2	D_1		
-	${\color{black}\bullet}$	${\color{black}\bullet}$	lacksquare	5	lacksquare	lacksquare	\bigcirc		
2	\bigcirc	lacksquare	lacksquare	6	\bigcirc	lacksquare	\bigcirc		
3	lacksquare	\bigcirc	lacksquare	7	•	\bigcirc	\bigcirc		
1	\bigcirc	\bigcirc	•	8	\bigcirc	\bigcirc	\bigcirc		

Pattern discrimination criteria:

- Euclidian distance between observed PK value and predicted ones

· 3rd past dose adherence badly predicted

• PK method is not informative enough

→ to be associated to electronic monitoring

Clinical application: future OCTO study _____ cOmpliance to oral ChemoTherapy in Oncology

· impact of non-compliance on efficacy and toxicity patients treated with cancer in an oral chemotherapy

· capecitabine (Xeloda[®], Roche) prescribed to metastatic breast and colorectal cancer patients. First administrations supervised in the hospital

 building of population PK model of FBAL (capecitabine metabolite with longest half-life) determination of individual PK parameters

 Probability to observe a concentration value between the observed one and the predicted one (to be implemented)

References

1. Lu J et al., J Pharmacokinet Pharmacodyn 2001

2. Lim LL, *Biometrics* 1992

3. Mu S et al, J Pharmacokinet Pharmacodyn 2003

4. Gieschke R et al., J Pharmacokinet Pharmacodyn 2002

 compliance estimated on PK sample and measured by electronic monitoring (EM)

Conclusion and perspectives

• Method allows to correctly characterize adherence up to 5 $t\frac{1}{2}$ in the past as long as dosing times are known (*e.g.* determined by EM)

• Develop a method to estimate amount (number of pills) taken for each EM system opening